Publications

  • Gradient-Free Variational Learning With Conditional Mixture Networks
    NeurIPS Workshop on Bayesian Decision-making and Uncertainty, 2024
    Conor Heins, Hao Wu, Dimitrije Markovic, Alexander Tschantz, Jeff Beck, Christopher Buckley
    Paper
    @article{heins2024gradient, title={Gradient-free variational learning with conditional mixture networks}, author={Heins, Conor and Wu, Hao and Markovic, Dimitrije and Tschantz, Alexander and Beck, Jeff and Buckley, Christopher}, journal={arXiv preprint arXiv:2408.16429}, year={2024} }
  • Divide-and-Conquer Predictive Coding: a structured Bayesian inference algorithm
    Conference on Neural Information Processing Systems (NeurIPS), 2024
    Eli Sennesh, Hao Wu, Tommaso Salvatori
    Paper
    @article{sennesh2024divide,
    title={Divide-and-Conquer Predictive Coding: a structured Bayesian inference algorithm},
    author={Sennesh, Eli and Wu, Hao and Salvatori, Tommaso},
    journal={arXiv preprint arXiv:2408.05834},
    year={2024}
    }
  • Nested Variational Inference
    Conference on Neural Information Processing Systems (NeurIPS), 2021
    Symposium on Advances in Approximate Bayesian Inference (AABI), 2021
    Heiko Zimmermann, Hao Wu, Babak Esmaeili, Sam Stites, Jan-Willem van de Meent
    Paper
    @article{zimmermann2021nested,
    title={Nested Variational Inference},
    author={Zimmermann, Heiko and Wu, Hao and Esmaeili, Babak and van de Meent, Jan-Willem},
    journal={Advances in Neural Information Processing Systems},
    volume={34},
    year={2021}
    }
  • Learning Proposals for Probabilistic Programs with Inference Combinators
    Uncertainty in Artificial Intelligence (UAI), 2021
    Sam Stites*, Heiko Zimmermann*, Hao Wu, Eli Sennesh, Jan-Willem van de Meent
    Paper
    @inproceedings{stites2021learning,
    title={Learning proposals for probabilistic programs with inference combinators},
    author={Stites, Sam and Zimmermann, Heiko and Wu, Hao and Sennesh, Eli and van de Meent, Jan-Willem},
    booktitle={Uncertainty in Artificial Intelligence},
    pages={1056--1066},
    year={2021},
    organization={PMLR}
    }
  • Conjugate Energy-Based Models
    International Conference on Machine Learning (ICML), 2021
    Symposium on Advances in Approximate Bayesian Inference (AABI), 2021
    Hao Wu*, Babak Esmaeili*, Michael Wick, Jean-Baptiste Tristan, Jan-Willem van de Meent
    Paper Talk
    @inproceedings{wu2021conjugate,
    title={Conjugate Energy-Based Models},
    author={Wu, Hao and Esmaeili, Babak and Wick, Michael L and Tristan, Jean-Baptiste and van de Meent, Jan-Willem},
    booktitle={International Conference on Machine Learning},
    volume = {139},
    pages = {11228--11239},
    year = {2021},
    series = {Proceedings of Machine Learning Research},
    publisher = {PMLR}
    }
  • Amortized Population Gibbs Samplers with Neural Sufficient Statistics
    International Conference on Machine Learning (ICML), 2020
    Hao Wu, Heiko Zimmermann, Eli Sennesh, Tuan Anh Le, Jan-Willem van de Meent
    Paper Code Talk
    @inproceedings{wu2020amortized,
    title={Amortized Population Gibbs Samplers with Neural Sufficient Statistics},
    author={Wu, Hao and Zimmermann, Heiko and Sennesh, Eli and Le, Tuan Anh and Van De Meent, Jan-Willem},
    booktitle={International Conference on Machine Learning},
    pages={10421--10431},
    year={2020},
    organization={PMLR}
    }
  • Structured Disentangled Representations
    Artificial Intelligence and Statistics (AISTATS), 2019
    Babak Esmaeili, Hao Wu, Sarthak Jain, Alican Bozkurt, N. Siddharth, Brooks Paige, Dana H. Brooks, Jennifer Dy, Jan-Willem van de Meent
    Paper
    @inproceedings{esmaeili2019structured,
    title={Structured disentangled representations},
    author={Esmaeili, Babak and Wu, Hao and Jain, Sarthak and Bozkurt, Alican and Siddharth, Narayanaswamy and Paige, Brooks and Brooks, Dana H and Dy, Jennifer and Meent, Jan-Willem},
    booktitle={The 22nd International Conference on Artificial Intelligence and Statistics},
    pages={2525--2534},
    year={2019},
    organization={PMLR}
    }
  • -->
  • Composing Modeling and Inference Operations with Probabilistic Program Combinators
    NeurIPS Workshop on Bayesian Nonparametrics, 2018
    Eli Sennesh, Adam Ścibior, Hao Wu, Jan-Willem van de Meent
    Paper
    @article{sennesh2018composing,
    title={Composing Modeling and Inference Operations with Probabilistic Program Combinators},
    author={Sennesh, Eli and Wu, Hao and van de Meent, Jan-Willem},
    booktitle={Workshop on Bayesian Nonparametrics at Advances in Neural Information Processing Systems},
    year={2018} }